THE PROJECTIVE PLANE CROSSING NUMBER OF THE CIRCULANT GRAPH $C(3k; \{1, k\})$

Pak Tung Ho

Department of Mathematics, Sogang University, Seoul 121-742, Korea
e-mail: ptho@sogang.ac.kr

Abstract

In this paper we prove that the projective plane crossing number of the circulant graph $C(3k; \{1, k\})$ is $k - 1$ for $k \geq 4$, and is 1 for $k = 3$.

Keywords: crossing number, circulant graph, projective plane.

2010 Mathematics Subject Classification: 05C10.

1. Introduction

The crossing number is an important measure of the non-planarity of a graph. Bhatt and Leighton [1] showed that the crossing number of a network (graph) is closely related to the minimum layout area required for the implementation of a VLSI circuit for that network. In general, determining the crossing number of a graph is hard. Garey and Johnson [3] showed that it is NP-complete. In fact, Hliněný [6] has proved that the problem remains NP-complete even when restricted to cubic graphs. Moreover, the exact crossing number is not known even for specific graph families, such as complete graphs [16], complete bipartite graphs [11, 22], and circulant graph [8, 12, 13, 14, 20, 23]. For more about crossing number, see [2, 21] and references therein.

Attention has been paid to the crossing number of graphs on surfaces [4, 5, 7, 9, 10, 17, 18, 19]. However, exact values are known only for very restricted classes of graphs. In this paper, we compute the projective plane crossing number of the circulant graph $C(3k; \{1, k\})$.

Theorem 1. The projective plane crossing number of the circulant graph $C(3k; \{1, k\})$ is given by

$$cr_1(C(3k; \{1, k\})) = \begin{cases} k - 1 & \text{for } k \geq 4, \\ 1 & \text{for } k = 3. \end{cases}$$
Note that there are only a few infinite classes of graphs whose projective plane crossing number are known exactly. See [9, 19].

Here are some definitions. Let \(G \) be a simple graph with the vertex set \(V = V(G) \) and the edge set \(E = E(G) \). The circulant graph \(C(n; S) \) is the graph with the vertex set \(V(C(n; S)) = \{ v_i \mid 1 \leq i \leq n \} \) and the edge set \(E(C(n; S)) = \{ v_i v_j \mid 1 \leq i, j \leq n, (i-j) \mod n \in S \} \) where \(S \subseteq \{1, 2, \ldots, \lfloor n/2 \rfloor \} \).

The projective plane crossing number \(cr_1(G) \) of \(G \) is the minimum number of crossings of all the drawings of \(G \) in the projective plane having the following properties: (i) no edge has a self-intersection; (ii) no two adjacent edges intersect; (iii) no two edges intersect each other more than once; (iv) each intersection of edges is a crossing rather than tangential; and (v) no three edges intersect in a common point. Similarly one can define the plane crossing number \(cr(G) \) of the graph \(G \). In a drawing \(D \), if an edge (or a set of edges) does not cross other edges, we call it clean; otherwise, we call it cross. For a drawing \(D \), the total number of crossings is denoted by \(v(D) \).

Let \(A \) and \(B \) be two (not necessary disjoint) subsets of the edge set \(E \). In a drawing \(D \), the number of crossings crossed by an edge in \(A \) and another edge in \(B \) is denoted by \(v_D(A, B) \). In particular, \(v_D(A, A) \) is denoted by \(v_D(A) \), and hence \(v(D) = v_D(E) \). By counting the number of crossings in \(D \), we have the following:

Lemma 2. Let \(A, B, C \) be mutually disjoint subsets of \(E \). Then,

\[
\begin{align*}
v_D(A, B \cup C) &= v_D(A, B) + v_D(A, C), \\
v_D(A \cup B) &= v_D(A) + v_D(B) + v_D(A, B).
\end{align*}
\]

The plan of this paper is as follows. In Section 2 we prove the upper bound of the projective crossing number of \(C(3k; \{1, k\}) \). In Section 3, we prove the lower bound of the projective crossing number of \(C(3k; \{1, k\}) \) by assuming Lemma 7. In Section 4, we prove Lemma 7, which says that for any drawing of \(C(3k; \{1, k\}) \) with all of its cycles being clean, its number of crossing is at least \(k - 1 \).

2. Upper Bounds

From now on, we will denote the circulant graph \(C(3k; \{1, k\}) \) by \(C(k) \) for simplicity. First we have the following:

Lemma 3. \(cr_1(C(3)) \leq 1 \).

Proof. One can refer to the drawing of \(C(3) \) in the projective plane in Figure 1.

\[\blacksquare \]

Lemma 4. \(cr_1(C(k)) \leq k - 1 \) for \(k \geq 4 \).
Proof. For a non-planar graph G, the plane crossing number is strictly greater than the projective plane crossing number, i.e., $cr_1(G) \leq cr(G) - 1$. Lemma 4 follows from $cr(C(k)) = k$ for $k \geq 4$, which is proved in [12].

3. Lower Bounds

Next, we have the following:

Lemma 5. $cr_1(C(3)) \geq 1$.

Proof. It suffices to show that $C(3)$ cannot be embedded in the projective plane. Note that $C(3) - \{v_1v_7, v_2v_8, v_3v_6\}$ is isomorphic to $F_1(9,15)$ (see Figure 2) in the list of the minimal forbidden subgraphs for the projective plane (see Appendix A in [15]). This shows that $C(3)$ cannot be embedded in the projective plane.

In fact, we have shown the following:

Corollary 6. If e is an edge in the cycle C_i (see the definition below) in $C(3)$, then $cr_1(C(3) - e) \geq 1$.

In $C(k)$, we define

$$C_i = \{v_{i}v_{k+i}, v_{i}v_{2k+i}, v_{k+i}v_{2k+i}\},$$

where $1 \leq i \leq k$. We have the following:

Lemma 7. For $k \geq 4$, let D be a drawing of $C(k)$ such that C_i is clean for all $1 \leq i \leq k$. Then $v(D) \geq k - 1$.
We postpone its proof to Section 4. By assuming Lemma 7, we are in a position to prove the lower bound of $cr_1(C(k))$.

Lemma 8.

\[(2) \quad cr_1(C(k)) \geq k - 1 \text{ for } k \geq 4.\]

Proof. We will prove (2) by induction on k. First consider $k = 4$. Suppose D is a drawing of $C(4)$. We will prove $v(D) \geq 3$ by contradiction. Suppose that $v(D) \leq 2$. Then there exists C_i which crosses; otherwise, if all C_i are clean, $v(D) \geq 3$ by Lemma 7.

Without loss of generality, we may assume that the edge v_1v_5 in C_1 crosses. Then there exists an edge e in $D - v_1v_5$ such that $D - v_1v_5 - e$ is an embedding in the projective plane. Note that e cannot be the edge in any cycle C_1: If e is an edge in C_1 other than v_1v_5, then $D - C_1$, which is a subdivision of $C(3)$, is an embedding in the projective plane, which is impossible by Lemma 5. If e is an edge in C_i with $i \neq 1$, then $D - C_1 - e$, which is a subdivision of $C(3)$ minus an edge in the cycle C_i is an embedding in the projective plane, which contradicts Corollary 6.

Therefore, by symmetry, we have the following possibilities: $e = v_2v_3$, $e = v_4v_5$, $e = v_5v_6$, $e = v_6v_7$, $e = v_7v_8$, $e = v_8v_9$. We will show that it is impossible for $C(4) - v_1v_5 - e$ to be embedded in the projective plane for each of these cases, which will give the required contradiction.

First, by contracting the edges v_5v_6 and v_7v_8 in $C(4) - \{v_1v_5, v_4v_5, v_8v_9\}$, we get a graph which contains a subgraph isomorphic to $F_4(10, 16)$ (see Figure 3(a)) in the list of the minimal forbidden subgraphs for the projective plane (see Appendix A in [15]). Moreover, by contracting the edges v_3v_4 and v_5v_6 in $C(4) - \{v_1v_5, v_2v_3, v_6v_7\}$, we get a graph which contains a subgraph isomorphic to $F_4(10, 16)$ (see Figure 3(b)).
Next we are going to show that $C(4) - \{v_1v_5, v_5v_6\}$ cannot be embedded in the projective plane. Suppose it is not true and let D be an embedding of $C(4) - \{v_1v_5, v_5v_6\}$ in the projective plane. Delete the edge v_2v_6 in the drawing. Since v_1v_5 and v_5v_6 are absent, we can always draw an edge connecting v_4 and v_9 which is close to the edges v_4v_5 and v_5v_9 without producing new crossings (see Figure 4(a)). Similarly, since v_2v_6 and v_5v_6 are absent, we can draw an edge connecting v_7 and v_{10} which is close to the edges v_6v_7 and v_6v_{10} without producing new crossings (see Figure 4(b)). Therefore, we obtain an embedding of $C(12, \{1, 4\}) - \{v_1v_5, v_5v_6, v_2v_6\} + \{v_4v_9, v_7v_{10}\}$ in the projective plane, which is impossible since it contains a minor isomorphic to $F_5(10, 16)$ (see Figure 3(c)).

Finally, one can see that $C(12, \{1, 4\}) - \{v_1v_5, v_7v_8\}$ contains a minor isomorphic to $F_5(10, 16)$ (see Figure 5) in the list of the minimal forbidden subgraphs for the projective plane (see Appendix A in [15]).

Therefore, (2) is true for $k = 4$. Now suppose that (2) is true for all values less than $k \geq 5$. Let D be a drawing of $C(k)$ in the projective plane and we are going to show that $v(D) \geq k - 1$.

If there exists $1 \leq i \leq 3k$ such that v_iv_{k+i} crosses, then by deleting v_iv_{k+i}, $v_{k+i}v_{2k+i}$, $v_{2k+i}v_{i}$, we obtain a drawing of a subdivision of $C(k-1)$, denote it by D'. By our construction, $v(D') \leq v(D) - 1$. On the other hand, $v(D') \geq k - 2$ by induction assumption. This implies $v(D) \geq k - 1$. Therefore, we may assume that v_iv_{k+i} is clean in D for all $1 \leq i \leq 3k$, i.e., C_i is clean for all $1 \leq i \leq k$. Then by Lemma 7, we have $v(D) \geq k - 1$.

Proof of Theorem 1. It follows from Lemma 3, 4, 5 and 8.

4. **Proof of Lemma 7**

This section is devoted to proving Lemma 7. Throughout this section, we assume that C_i is clean for $1 \leq i \leq k$, as we have assumed in Lemma 7.
For $1 \leq i \leq k$, let

$$F_i = \{v_i v_{k+i}, v_i v_{2k+i}, v_{k+i} v_{2k+i}, v_i v_{i+1}, v_{k+i} v_{k+i+1}, v_{2k+i} v_{2k+i+1}\}.$$

Note that the set of all F_i is a partition of the edge set E of $C(k)$, i.e.,

$$E = \bigcup_{i=1}^{k} F_i$$

and

$$F_i \cap F_j = \emptyset$$

for $i \neq j$.

For $1 \leq i \leq k$, define

$$f_D(F_i) = v_D(F_i) + \frac{1}{2} \sum_{j \neq i} v_D(F_i, F_j).$$

Since we have assumed that each C_i is clean, there are only two possible ways of drawing C_i, depending on whether it is contractible or not, which are shown in Figure 6(a) and 6(b).

If C_i and C_{i+1} are both contractible, there are three possible ways of drawing $C_i \cup C_{i+1}$ for each i, which are shown in Figure 7(a), 7(b) and 7(c).

![Figure 6(a). C_i is contractible.](image)

![Figure 6(b). C_i is non-contractible.](image)

We have the following:

Proposition 9. If C_i and C_{i+1} are drawn as in Figure 7(a) or 7(b), then $f_D(F_i) \geq 1$.

Proof. Suppose $f_D(F_i) < 1$. By (4), $v_i v_{i+1}, v_{k+i} v_{k+i+1}, v_{2k+i} v_{2k+i+1}$ do not cross each other. If $C_i \cup C_{i+1}$ is drawn as in Figure 7(a), $F_i \cup C_{i+1}$ must be drawn as in Figure 8 since C_i, C_{i+1} are clean and $v_i v_{i+1}, v_{k+i} v_{k+i+1}, v_{2k+i} v_{2k+i+1}$ do not cross each other. Since C_{i-1} is clean, C_{i-1} must lies entirely in one of the regions f_1, f_2 or f_3. We may assume that C_{i-1} lies in the region f_1, for other cases the proof is the same. If C_{i-1} lies in f_1, then $v_{k+i} v_{k+i+1}$ must cross $v_i v_{i+1}$ or $v_{2k+i} v_{2k+i+1}$. On the other hand, the path $v_{k+i+1} v_{k+i+2} \cdots v_{2k-i-1}$ must cross $v_i v_{i+1}$ or $v_{2k+i} v_{2k+i+1}$. Hence, by (4), $f_D(F_i) \geq 1$. Similarly, one can show that $f_D(F_i) \geq 1$ if $C_i \cup C_{i+1}$ is drawn as in Figure 7(b).
By Proposition 9, again we have Figure 7(c). In the latter case, by Proposition 10, either Corollary 11.

Combining Proposition 9 and 10, we have the following:

Proposition 10. If $C_i \cup C_{i+1}$ is drawn as in Figure 7(c) and $f_D(F_i) < 1$, then $F_i \cup C_{i+1}$ must be drawn as in Figure 9(b).

Proof. Since $f_D(F_i) < 1$, by (4), $v_{k+i}v_{k+i+1}, v_{2k+i}\cup v_{2k+i+1}$ do not cross each other. Then $F_i \cup C_{i+1}$ must be drawn as in Figure 9(a) or 9(b). If $F_i \cup C_{i+1}$ is drawn as in Figure 9(a), then C_{i-1} must lie entirely in one of the regions f_1, f_2 or f_3 since C_{i-1} is clean. We may assume that C_{i-1} lies in the region f_1, for other cases the proof is the same. If C_{i-1} lies in f_1, then $v_{i-1}v_i$ must cross $v_{k+i}v_{k+i+1}$ or $v_{2k+i}v_{2k+i+1}$ since C_i and C_{i+1} are clean. On the other hand, the path $v_{i+1}v_{i+2} \cdots v_{k-1}$ must cross F_i. Hence, by (4), we have $f_D(F_i) \geq 1$, which contradicts that $f_D(F_i) < 1$.

Combining Proposition 9 and 10, we have the following:

Corollary 11. If $F_i \cup C_{i+1}$ is not drawn as in Figure 9(b), then $f_D(F_i) \geq 1$.

Proof. By Proposition 10, either $f_D(F_i) \geq 1$ or $C_i \cup C_{i+1}$ is not drawn as in Figure 7(c). In the latter case, $C_i \cup C_{i+1}$ must be drawn as in Figure 7(a) or 7(b). By Proposition 9, again we have $f_D(F_i) \geq 1$.

Figure 7(a)

Figure 7(b)

Figure 7(c)

Figure 8

Figure 9(a)

Figure 9(b)
Remark 12. Hereafter, we say that $F_j \cup C_{j+1}$ is drawn as in Figure 9(b) if it is drawn as in Figure 9(c), i.e., replacing all the indices i by j.

![Figure 9(c)](image)

![Figure 9(d)](image)

Figure 9(c) and Figure 9(d)

Figure 10. $F_i \cup C_{i+1} \cup F_j \cup C_{j+1}$.

Figure 11. $F_1 \cup F_2 \cup C_3$.

Proposition 13. Suppose that $F_i \cup C_{i+1}$ is drawn as in Figure 9(b). If $j \neq i-1, i, i+1$ such that $F_j \cup C_{j+1}$ is drawn as in Figure 9(b), then F_i and F_j must cross each other. In particular, we have $f_D(F_i) \geq 1/2$ and $f_D(F_j) \geq 1/2$.

Proof. Note that two non-contractible curves in the projective plane must cross each other. Since $F_i \cup C_{i+1}$ and $F_j \cup C_{j+1}$ are drawn as in Figure 9(b) where $j \neq i-1, i+1$, F_i and F_j must cross each other since $C_i, C_{i+1}, C_j, C_{j+1}$ are clean. See Figure 10 for a possible drawing of $F_i \cup C_{i+1} \cup F_j \cup C_{j+1}$. Since F_i and F_j cross each other, we have $v_D(F_i, F_j) \geq 1$, which implies that $f_D(F_i) \geq 1/2$ and $f_D(F_j) \geq 1/2$ by (4).
Here is the outline of the proof of Lemma 7. We will consider two cases:

Case 1. C_i is contractible for all $1 \leq i \leq k$.

Case 2. C_i is non-contractible for some $1 \leq i \leq k$.

For Case 1, by simple arguments, we can show that $F_1 \cup C_2$ is drawn as in Figure 9(b). Moreover, we can show that $f_D(F_{i_0}) < 1$ for some $i_0 \neq 1$. Then we will consider two cases:

Case 1.1. $i_0 \neq 2, k$.

Case 1.2. $i_0 = 2$ or k.

Case 1.1 can be solved easily. For Case 1.2, we will assume that $i_0 = 2$ since the proof for $i_0 = k$ is the same. Then we will consider two cases:

Case 1.2.1. $f_D(F_j) \geq 1$ for all $j \neq 1, 2$.

Case 1.2.2. $f_D(F_j) < 1$ for some $j \neq 1, 2$.

For Case 1.2.1, by assumption, $f_D(F_j) \geq 1$ for all $j \neq 1, 2$. We just need to show that $f_D(F_1) + f_D(F_2) > 0$, which implies that $v(D) = \sum_{j=1}^{k} f_D(F_j) = f_D(F_1) + f_D(F_2) + \sum_{j \neq 1, 2} f_D(F_j) > k - 2$, and hence $v(D) \geq k - 1$ since $v(D)$ is an integer. For Case 1.2.2, by assumption, $f_D(F_j) < 1$ for some $j \neq 1, 2$. Then we will consider two cases:

Case 1.2.2.1. $j \neq 3, k$.

Case 1.2.2.2. $j = 3$ or k.

Case 1.2.2.1 can be solved easily.

For Case 1.2.2.2, we can assume that

(5) \[f_D(F_l) \geq 1 \text{ for } l \neq 1, 2, 3, k. \]

Otherwise, if $f_D(F_l) < 1$ for some $l \neq 1, 2, 3, k$, then it can be reduced to Case 1.2.2.1 by taking $j = l$. By simple arguments, we can reduce it to the case when both $F_3 \cup C_4$ and $F_k \cup C_1$ are drawn as in Figure 9(b). That is to say, $F_i \cup C_{i+1}$ is drawn as in Figure 9(b) for $i = 1, 2, 3, k$. Then by Proposition 13, F_1 crosses F_3 and F_2 crosses F_k. Moreover, if $k \geq 5$, then F_1 also crosses F_k. All these imply

(6) \[f_D(F_1) \geq 1, f_D(F_k) \geq 1, f_D(F_2) \geq 1/2, \text{ and } f_D(F_3) \geq 1/2. \]

Combining (5) and (6), we get $v(D) \geq k - 1$. For $k = 4$, we will use different arguments by making use the fact that $F_i \cup C_{i+1}$ is drawn as in Figure 9(b) for $i = 1, 2, 3, 4$.

Now we are ready to prove Lemma 7.
Proof of Lemma 7. By (1), (3) and (4), the total number of crossing of the drawing \(D \) is \(v(D) = v_D(E) = \sum_{i=1}^{k} f_D(F_i) \). Therefore, it suffices to prove that \(\sum_{i=1}^{k} f_D(F_i) \geq k - 1 \). To prove by contradiction, we assume that

\[
\sum_{i=1}^{k} f_D(F_i) < k - 1.
\]

We will consider two cases: Case 1. \(C_i \) is contractible for all \(1 \leq i \leq k \) and Case 2. \(C_i \) is non-contractible for some \(1 \leq i \leq k \).

Case 1. Since we have assumed that \(C_i \) is clean for \(1 \leq i \leq k \), as we have said at the beginning of this section, there are three possible ways of drawing \(C_i \cup C_{i+1} \) for each \(i \), which are shown in Figure 7(a), 7(b) or 7(c).

Note that (7) implies that \(f_D(F_i) < 1 \) for some \(i \). Without loss of generality, we may assume \(i = 1 \), i.e.,

\[
f_D(F_1) < 1.
\]

By Proposition 9, \(C_1 \cup C_2 \) must be drawn as in Figure 7(c). Hence, by (8) and Proposition 10, \(F_1 \cup C_2 \) is drawn as in Figure 9(b) (see Figure 9(d)).

There exists \(i_0 \neq 1 \) such that \(F_{i_0} \cup C_{i_0+1} \) is drawn as in Figure 9(b). (Otherwise, if \(F_j \cup C_{j+1} \) is not drawn as in Figure 9(b) for all \(j \neq 1 \), \(f_D(F_j) \geq 1 \) for all \(j \neq 1 \) by Corollary 11, which implies \(\sum_{j=1}^{k} f_D(F_j) \geq \sum_{j \neq 1} f_D(F_j) \geq k - 1 \).)

We will consider two cases: Case 1.1. \(i_0 \neq 2, k \) and Case 1.2. \(i_0 = 2 \) or \(k \).

Case 1.1. If \(i_0 \neq 2, k \), i.e., \(C_{i_0} \cup C_{i_0+1} \) is drawn as in Figure 9(b) for some \(i_0 \neq 1, 2, k \), then by Proposition 13, \(F_1 \) and \(F_{i_0} \) cross each others,

\[
f_D(F_1) \geq 1/2 \text{ and } f_D(F_{i_0}) \geq 1/2.
\]

Moreover, if there exists \(j \neq 1, 2, i_0, k \) such that \(f_D(F_j) < 1 \), then \(F_j \cup C_{j+1} \) must be drawn as in Figure 9(b) by Proposition 10. By Proposition 13, \(F_j \) and \(F_1 \) must also cross each other. Hence, \(f_D(F_1) \geq 1 \) since \(F_1 \) crosses both \(F_{i_0} \) and \(F_j \), which contradicts (8). Therefore,

\[
f_D(F_j) \geq 1 \text{ for all } j \neq 1, 2, i_0, k.
\]

Moreover, we can assume that

\[
f_D(F_2) \geq 1 \text{ and } f_D(F_k) \geq 1.
\]

(Otherwise, \(f_D(F_2) < 1 \) or \(f_D(F_k) < 1 \) implies that \(F_2 \cup C_3 \) or \(F_k \cup C_1 \) is drawn as in Figure 9(b) by Proposition 10. Replacing \(i_0 \) by 2 or \(k \), one can reduce this to Case 1.2.) Combining (9), (10) and (11), we have \(\sum_{j=1}^{k} f_D(F_j) \geq f_D(F_1) + f_D(F_{i_0}) + \sum_{j \neq 1, i_0} f_D(F_j) \geq k - 1 \).
Case 1.2. If \(i_0 = 2 \) or \(k \), then we may assume that \(i_0 = 2 \) since the proof for \(i_0 = k \) is the same. Then \(F_2 \cup C_3 \) is drawn as in Figure 9(b). We will consider two cases: Case 1.2.1. \(f_D(F_j) \geq 1 \) for all \(j \neq 1, 2 \) and Case 1.2.2. \(f_D(F_j) < 1 \) for some \(j \neq 1, 2 \).

Case 1.2.1. By assumption,

\[
(12) \quad f_D(F_j) \geq 1 \text{ for all } j \neq 1, 2.
\]

If we can show that

\[
(13) \quad f_D(F_1) + f_D(F_2) > 0,
\]

then by (12) and (13),

\[
v(D) = \sum_{j=1}^{k} f_D(F_j) = f_D(F_1) + f_D(F_2) + \sum_{j \neq 1, 2} f_D(F_j) > k - 2,
\]

which implies that \(v(D) \geq k - 1 \) since the total number of crossing \(v(D) \) is an integer.

Suppose (13) is not true, i.e.,

\[
(14) \quad f_D(F_1) = f_D(F_2) = 0.
\]

Recall that \(F_1 \cup C_2 \) is drawn as in Figure 9(d). Since \(C_3 \) is clean, \(C_3 \) must lie entirely in regions \(f_1 \) or \(f_2 \) in Figure 9(d). If \(C_3 \) lies in \(f_1 \), then \(v_2v_3 \) must cross \(v_{k+1}v_{k+2} \) or \(v_{2k+1}v_{2k+2} \). By (4), \(f_D(F_2) \geq 1/2 \), which contradicts (14). Therefore, \(C_3 \) lies in \(f_2 \). By (4) and (14), \(v_2v_3, v_{k+2}v_{k+3}, v_{2k+2}v_{2k+3} \) are clean. Then the only possible drawing of \(F_1 \cup F_2 \cup C_3 \) is shown as in Figure 11. (It is true up to renaming the vertices. For example, it is possible for \(F_1 \cup F_2 \cup C_3 \) to be drawn as in Figure 12. But one can reduce it to Figure 11 by the transformation \(v_j \mapsto v_{j-k} \).)
Since C_4 is clean, it must lie entirely in one of the regions in Figure 11. Note that v_3, v_{k+3} and v_{2k+3} do not lie in the same region in Figure 11. No matter which region C_4 lies in Figure 11, one of the edges $v_3v_4, v_{k+3}v_{k+4}$ and $v_{2k+3}v_{2k+4}$ must cross the F_1 or F_2 (Note that $k \geq 4$ is crucial here for C_4 being not equal to C_1). Hence, $f_D(F_1) + f_D(F_2) > 0$ which gives (13).

Case 1.2.2. If $f_D(F_j) < 1$ for some $j \neq 1, 2$, then $F_j \cup C_{j+1}$ must be drawn as in Figure 9(b) by Proposition 10. We will consider two cases: Case 1.2.2.1. $j \neq 3, k$ and Case 1.2.2.2. $j = 3$ or k.

Case 1.2.2.1. Since $F_j \cup C_{j+1}$ is drawn as in Figure 9(b) where $j \neq 1, 2, 3, k, F_j$ must cross F_1 and F_2 by Proposition 13, since $F_1 \cup C_2$ and $F_2 \cup C_3$ are drawn as in Figure 9(b). This implies that, by (4),

\[(15) \quad f_D(F_1) \geq 1/2, f_D(F_2) \geq 1/2, \text{ and } f_D(F_j) \geq 1.\]

Note that

\[(16) \quad f_D(F_r) \geq 1 \text{ for all } r \neq 1, 2, 3, j, k.\]

Otherwise, if $f_D(F_r) < 1$ for some $r \neq 1, 2, 3, j, k$, then by Proposition 10, $F_r \cup C_{r+1}$ is drawn as in Figure 9(b). By Proposition 13, F_r also crosses F_1. This implies $f_D(F_1) \geq 1$ since F_1 cross F_j and F_r, which contradicts (8).

We claim that

\[(17) \quad f_D(F_3) \geq 1 \text{ and } f_D(F_k) \geq 1.\]

To see this, suppose that $f_D(F_3) < 1$. Then $F_3 \cup C_4$ is drawn as in Figure 9(b) by Proposition 10. Hence F_1 must cross F_3 and F_j by Proposition 13, which implies that $f_D(F_1) \geq 1$ and contradicts (8). On the other hand, if $f_D(F_k) < 1$, then $F_k \cup C_1$ must be drawn as in Figure 9(b) by Proposition 10. Hence F_2 must cross F_k and F_j by Proposition 13, which implies that $f_D(F_2) \geq 1$ and contradicts (8). This proves (17).

Combining (15), (16) and (17), we get $\sum_{r=1}^{k} f_D(F_r) = f_D(F_1) + f_D(F_2) + \sum_{r \neq 1, 2} f_D(F_r) \geq k - 1$.

Case 1.2.2.2. If $j = 3$ or k, then $F_k \cup C_1$ or $F_3 \cup C_4$ is drawn as in Figure 9(b). We may assume that

\[(18) \quad f_D(F_l) \geq 1 \text{ for } l \neq 1, 2, 3, k.\]

(Otherwise, if $f_D(F_l) < 1$ for some $l \neq 1, 2, 3, k$, then it can be reduces to Case 1.2.2.1 by taking $j = l$.) It can be reduced to the case when both $F_3 \cup C_4$ and $F_k \cup C_1$ are drawn as in Figure 9(b).
To see this, suppose that $F_3 \cup C_4$ is drawn as in Figure 9(b) and $F_k \cup C_1$ is not. Then by Corollary 11

(19) \[f_D(F_k) \geq 1, \]

and F_3 must cross F_1 by Proposition 13 since $F_1 \cup C_2$ is drawn as in Figure 9(b). We claim that F_1 must cross F_k. Assuming the claim, we have

(20) \[f_D(F_1) \geq 1 \text{ and } f_D(F_3) \geq 1/2. \]

Combining (18), (19) and (20), we get $\sum_{r=1}^{k} f_D(F_r) > k - 2$, which implies that $v(D) = \sum_{r=1}^{k} f_D(F_r) \geq k - 1$ since $v(D)$ is an integer.
To show the claim, i.e., F_1 crosses F_k, we note that $F_1 \cup C_2$ is drawn as in Figure 9(b). See Figure 13. Since C_k is clean, it must lie entirely in one of the regions in Figure 13. It is impossible for C_k to lie in f_3, otherwise, the path $v_2v_3\cdots v_k$ crosses C_1. It is also impossible for C_{-1} to lie in f_4, otherwise, v_kv_{k+1} crosses C_2. If C_k lies in f_1, v_3v_1 must cross with $v_{k+1}v_{k+2}$ or $v_{2k+1}v_{2k+2}$, which implies that F_k crosses F_1. If C_k lies in f_2, then F_k must cross F_1 since $F_k \cup C_1$ is not drawn as in Figure 9(b) by our assumption (See Figure 14 for example). Therefore, F_1 must cross F_k, as we claimed.

Similarly, if $F_k \cup C_1$ is drawn as in Figure 9(b) and $F_3 \cup C_4$ is not, then $\sum_{r=1}^{k} f_D(F_r) \geq k - 1$.

We will show that $v(D) \geq 3$. By contradiction, suppose that $v(D) \leq 2$. By (1) and (22), we have

$$f_D(F_1) = f_D(F_2) = f_D(F_3) = f_D(F_4) = 1/2.$$

Since F_1 crosses F_3, by (4) and (23) we get

$$v_D(F_1, F_3) = 1, v_D(F_1, F_j) = 0 \text{ for } j \neq 3, v_D(F_3, F_j) = 0 \text{ for } j \neq 1.$$

Similarly, since F_2 crosses F_4, by (4) and (23) we get

$$v_D(F_2, F_4) = 1, v_D(F_2, F_j) = 0 \text{ for } j \neq 4, v_D(F_4, F_j) = 0 \text{ for } j \neq 2.$$

Since $F_1 \cup C_2$ and $F_3 \cup C_4$ are drawn as in Figure 9(b), the only possible drawing of $F_1 \cup C_2 \cup F_3 \cup C_4$ is shown in Figure 15(a) in view of (24) and (25). However, one can show that it is impossible for (24), (25) to hold. For example, if $F_1 \cup C_2 \cup F_3 \cup C_4$ is drawn in Figure 15(b), then the edge v_8v_9 must cross with F_1 or F_3, which contradicts (24); and if $F_1 \cup C_2 \cup F_3 \cup C_4$ is drawn in Figure 15(c), then the edge v_2v_3 must lie entirely in the region f, as in Figure 15(d), since $v_D(F_2, F_j) = 0 \text{ for } j \neq 4$ by (25). However, in Figure 15(d), no matter how v_6v_7
is drawn, \(v_6v_7 \) must either (i) cross \(v_2v_3 \) which contradicts (25), or (ii) cross \(C_i \) which contradicts that \(C_i \) are all clean, or (iii) cross \(F_1 \) or \(F_3 \) which contradicts (25). We leave other cases to the reader.

Case 2. If there exists \(1 \leq i \leq k \) such that \(C_i \) is non-contractible, then we may assume that \(C_1 \) is non-contractible. Then \(C_i \) is contractible for all \(i \neq 1 \). (Otherwise, \(C_i \) crosses \(C_1 \) since two non-contractible curves in the projective plane must cross each other. This contradicts the assumption that all \(C_i \) are clean.) Since \(C_i \) and \(C_{i+1} \) are clean and contractible for \(i \neq 1, k \), there are three possible ways of drawing \(C_i \cup C_{i+1} \), which are shown in Figure 7(a), 7(b) or 7(c).

We claim that

\[
(26) \quad f_D(F_i) \geq 1 \text{ for } i \neq 1, k.
\]

To prove this, suppose that \(f_D(F_i) < 1 \) for some \(i \neq 1, k \). By Corollary 11, \(F_i \cup C_{i+1} \) must be drawn as in Figure 9(b), which crosses the non-contractible \(C_1 \). This contradicts that \(C_1 \) is clean. This proves (26).

Now we are going to show that

\[
(27) \quad f_D(F_1) + f_D(F_k) > 0.
\]

Combining this with (26), we will get \(\sum_{r=1}^{k} f_D(F_r) > k - 2 \), which gives \(v(D) = \sum_{i=1}^{k} f_D(F_i) \geq k - 1 \) since \(v(D) \) is an integer. Suppose that (27) is not true, i.e.,

\[
(28) \quad f_D(F_1) = f_D(F_k) = 0.
\]

Since \(C_1 \) is non-contractile and \(C_2 \) is contractible, \(C_1 \cup C_2 \) must be drawn as in Figure 16. On the other hand, by the same reasons, \(C_1 \cup C_k \) must be drawn as in Figure 16 by replacing \(C_2 \) by \(C_k \).

By (4) and (28), \(v_1v_2, v_{k+1}v_{k+2}, v_{2k+1}v_{2k+2} \) do not cross. From Figure 16, one can see that there are three possible ways of drawing \(F_1 \cup C_2 \), which are shown in Figure 17(a), 17(b) and 17(c).
If $F_1 \cup C_2$ is drawn as in Figure 17(b) and 17(c), then C_3 must lie entirely in one of the regions since C_3 is clean. Then F_2 must cross with F_1 since there is no region in Figure 17(b) or 17(c) containing all of the vertices v_2, v_{k+2} and v_{2k+2}. This implies $f_D(F_1) > 0$, which contradicts (28).

Therefore, $F_1 \cup C_2$ must be drawn as in Figure 17(a). By the same argument, $F_k \cup C_1$ must be drawn as in Figure 17(a) by replacing C_2 by C_k. Hence, $F_k \cup F_1 \cup C_2$ must be drawn as in Figure 18(a) or 18(b) since F_1 does not cross F_k by (28).

Note that C_3 must lie in one of the regions in Figure 18(a) or 18(b). Since there exists no region in Figure 18(a) or 18(b) which contains all of the vertices v_2, v_{k+2} and v_{2k+2}, F_3 must cross either F_k or F_1 ($k \geq 4$ is needed here for F_3 being not equal to F_k). This implies that $f_D(F_1) > 0$ or $f_D(F_k) > 0$, which gives (27).

This finishes the the proof of Lemma 7.
References

Received 2 September 2010
Revised 26 January 2011
Accepted 26 January 2011